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An algorithm is constructed for the use of the Lagrangian kinematic specification in 
Newtonian fluid mechanics. The algorithm is implemented with a finite-element 
method, and it is demonstrated that the method accurately describes free-surface flow, 
including the effects of surface tension, with the use of just bilinear isoparametric 
elements. Moving contact lines are modelled with a small amount of slip near the 
contact lines. The contact angle boundary condition is included in the form of a net 
interfacial force specified at the contact line. Simulations of measurements in a 
parallel-plate geometry show that the measured apparent contact angle is not the 
true angle, and that the true angle is always very close to the equilibrium value. 

1. Introduction 
The purpose of this paper is to construct an algorithm for the use of the Lagrangian 

specification of fluid flow and to illustrate its application in a series of flow situations 
with free surfaces and dynamic wetting lines. The Lagrangian kinematic specification 
has been used relatively little compared to the Eulerian specification. One reason for 
this may be that the conservation equations in Lagrangian form present an initial- 
value problem. Thus one is forced to include time as an independent variable even 
in situations where the aim is to describe a flow that is steady in the Eulerian 
specification, and in situations when an analytical solution is desired that is certainly 
inconvenient. In other situations, however, it  may not be possible to obtain analytical 
solutions in closed form, and then the solution procedure will involve an iterative 
process even when the Eulerian specification is used. In such situations we feel that 
the time variable present in the Lagrangian formulation is now a convenient 
parameter to use in the iteration process. In  $2 we demonstrate how an iterative 
process may be used to obtain a simple Lagrangian statement of the conservation 
equations for an incompressible Newtonian fluid, and in $3 this is converted to an 
algorithm. The method is an extension of that introduced by Bach & Hassager (1984) 
and used also by Bach & Villadsen (1984). An early application of the Lagrangian 
specification was that of Hirt, Cook t Butler (1970). 

In  $4 we apply the formulation to the flow near a meniscus of a fluid contained 
between two parallel planes sliding relative to each other with fixed separation. In 
$5 we consider subsequently the flow near the moving meniscus of a fluid advancing 
in the space between two fixed parallel planes. Both of these flow situations involve 
two interesting aspects of free-surface flow. These are: first, the flow in the immediate 
neighbourhood of a moving contact line where fluid contacts a solid wall; and, 
secondly, the question of locating the free boundary, which is somewhat inconvenient 
additional unknown variable when an Eulerian specification is used. 

The flow near a moving line of contact between a solid surface and a free surface 
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was considered by Moffatt (1964). In this development the free surface was assumed 
to  be flat and a solution was obtained which was valid in the neighbourhood of the 
contact line, but not at the contact line where a non-integrable stress singularity is 
predicted. In order to remedy this situation, Huh & Mason (1977) and Hocking (1981) 
introduced the physical model of minute slip a t  the contact line. This model was also 
used by Lowndes (1980) in a finite-element simulation of a moving meniscus and we 
will adopt i t  here. The correct treatment of a dynamic contact line is still not 
completely resolved. For example the molecular interpretation of slip is not under- 
stood, and the notion may be questioned. Also, from a practical point of view, the 
above model is useful primarily at low capillary numbers where surface-tension effects 
are important. A t  intermediate capillary numbers we will demonstrate that surface 
tension is important only in a small ‘boundary layer’ near the contact line. At  high 
capillary numbers a model in which fluid is ‘rolled’ onto or off a solid boundary may 
be needed. More information on dynamic wetting lines is found in Hocking (1981) 
and Kistler & Scriven (1983). 

The question of locating a free surface presents a difficulty when an Eulerian 
specification is used and the aim is to obtain a steady-state solution. As outlined 
previously, and reiterated recently by Tanner (1983) three boundary conditions are 
to be satisfied simultaneously at the free surface: (i) zero normal velocity; (ii) zero 
(or prescribed) shear stress; (iii) normal stress balanced by surface tension and 
external pressure. 

The most commonly used technique that deals with this situation is an iterative 
procedure in which one condition is ignored, the flow problem is then solved with the 
remaining two conditions for an assumed shape, the ignored condition is then used 
to change the shape and the flow problem is again solved with the remaining two 
conditions for the new shape, and so on. As outlined by Tanner (1983) the condition 
iteratively ignored should be either (i) or (iii) depending on the ratio of surface tension 
to viscous forces. Certainly this procedure is not very satisfactory. Another technique 
is that of Ruschak (1980), who included the location of the surface as a dependent 
variable. All three boundary conditions may then be included in the solution 
procedure at  the same time. In the Lagrangian formulation, however, the location 
of the free surface is already included among the dependent variables and presents 
no extra complication. Only conditions (ii) and (iii) are applied a t  the surface. 
Condition (i) will in general not be satisfied, but i t  holds if a steady state is ultimately 
reached. 

Finite-element codes are somewhat more lengthy to implement than finite- 
difference codes. For this reason a finite-element code should be formulated 
sufficiently generally such that a large number of physical problems can be described. 
In $6 we illustrate briefly the generality of the present implementation by considering 
a slide-coating operation where a thin layer of liquid is deposited on a moving surface. 

2. Lagrangian finite-element method 
To illustrate the fluid-mechanical content of the formulation, we begin with the 

equations of conservation of linear momentum and mass for incompressible Newtonian 
fluids in the conventional Eulerian form : 

a a a av. av, 
p (:t -+urn->. ax, = - - - p + p -  ax$ axm(axm -+- ax,) +psi (i = 1,2,3), (2.1) 

a 
m‘ o=-v 

axm 
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Here the wt = q(z, t )  are the components of the velocity field in a Cartesian coordinate 
system xr (i = 1,2,3) and x is used as shorthand for (x l ,  x2,  x3 ) .  In (2.1) and (2.2) p 
is the density, p = p ( x , t )  the pressure, p the viscosity, gr with i = 1,2,3 the 
components of the gravitational acceleration and t is time. We use the convention 
that the total stress tensor nr, is given by 

Furthermore, given a surface element ds with orientation defined by the unit normal, 
nr, then the force exerted by the fluid on the negative side of dS on the fluid on the 
positive side of ds has components i given by n,nji (Bird, Armstrong & Hassager 
(1977)). Obviously, some of the terms in (2.1) may be eliminated by the use of (2.2) 
but we retain the terms for later use. 

To arrive at a Lagrangian formulation, we must formulate the conservation 
equations in such a way that the coordinates xt appear as dependent variables and 
the independent variables are instead fluid particle labels. The ‘particle labels are 
conveniently defined by the particle coordinates z& at reference time to. The 
coordinates, when viewed as functions of particles and time, are then expressed as 
the displacement functions xt = x , ( Z ,  to, t )  where xo = (x!, x iy  x!). The other dependent 
variables are the Lagrangian velocity field ur = u,(xo, to, t )  and the Lagrangian 
pressure fieldp = p(xo ,  to, t ) .  The Lagrangian velocity field is related to the coordinates 
by the definition: 

a 
- X r ( X O ,  to, t )  = U r ( X O ,  to, t ) .  
at 

To arrive at the conservation statements we substitute u,(d ,  to, t )  and p(xo ,  to, t) for 
v r ( x , t )  and p ( x , t )  in (2.1) and (2.2). In  so doing we use the chain rule of partial 
differentiation only on the left-hand side of (2.1) : 

a a a au au, 
p - u , ( x ~ ,  to, t )  = - -p(xo,  to, t)+p-- -+- 

at 3% ax, ( ax, ax,)+pgr,  

a 
0 = -uUm(xO, to, t ) .  

axrn 

In  this form we recognize the simplification of the inertial terms on the left-hand side 
of (2.5), characteristic of a Lagrangian formulation. The price paid for this 
simplification is apparent on the right-hand side of (2.5) and (2.6) where the 
differentiations are with respect to the coordinates xr that we wish to determine. The 
most natural procedure might then seem to be to use the chain rule also on the 
right-hand side of these equations. This process brings in the relative deformation 
gradient, ax;/ax,, which is in turn expressed through its inverse axj/ax;. In  this work, 
however, we use a Merent  procedure in which we arrive at the unknown coordinates, 
velocities and pressures through an iterative process. In  each iteration where 
v = 0,1,2,  .. ., we solve the following equations for the velocities u;+l and pressures 
pVi1 :  

; (2.7) 
a a a au;+1 auy,+1 

p-u;+’(XO,t,, t )  = - - p ” + l ( X O ,  to, t)+p- 
at ax; ax& (x + -1 +Pgr  
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Here the x; are the coordinates obtained in the previous iteration. The coordinates 
are then updated through the use of (2.4): 

t 

x;+'(zo, to, t )  = xf+ u;+'(z0, to, t ') dt'. (2-9) 
t' - t o  

The coordinates x;+l from (2.9) are then used in (2.7) and (2.8) to determine u ; + ~  
and pv+a and so on. The process is initiated with the reference configuration x4 for 
v = 0 in (2.7) and (2.8). If the process converges so that xi - x;+l for sufficiently large 
v, then (2.7), (2.8) and (2.9) become equivalent to (2.4), (2.5) and (2.6), with the 
Lagrangian variables given by : 

ut = lim u;; 
w m  

p = lim p'. 
-00 

(2.10) 

(2.11) 

(2.12) 

Equations (2.7) and (2.8) are similar in form to (2.1) and (2.2) merely with the 
nonlinear term absent in (2.1), and it may seem surprising at  first that the above 
scheme provides a truly transient solution. Keep in mind, however, that the zt in (2.1) 
and (2.2) are fixed, whereas the xt in (2.7) and (2.8) are changed in the iterations. 
The procedure described so far does not involve any discretization assumptions. We 
turn now to the question of how the procedure may be implemented in a numerical 
simulation of flow. In  the Lagrangian formulation we discretize time and fluid 
material. 

The discretization of time is performed by using the following two approximations 
for the time derivative appearing in (2.7) and the integral in (2.9) : 

(2.13) 

u ~ + ' ( z O ,  to, t') dt' = ;(U;+'(X', to,  t )  +uf(z0, to, t o ) )  ( t - t o ) .  (2.14) 

Notice that these approximations require the current velocities to be reasonably close 
to the velocities in the reference configuration. The final time-marching scheme that 
appears then is the following : given an initial configuration and velocity field (xo, uo) 
at a time to, we update time by an amount At to t = to + At, and iterate for the (z, u, p) 
at time t through (2.7) to (2.9) as explained above. Once the new configuration has 
been determined it is then chosen as the next reference configuration and time is again 
updated and so on. Provided that the individual time steps are chosen to be 
sufficiently small the iterative scheme in each time step is rapidly convergent. 

The discretization of the fluid is performed by finite elements (see Cook 1974; or 
Chung 1978). This means that in each iteration in (2.7) and (2.8), the velocity field u;+l 
and pressure field p"+ ' are approximated by C; + ' and p'+ l ,  where 

It t'-to 

(2.15) 

(2.16) 
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Here Uig and P, are values of velocities and pressures a t  key fluid particles called nodes, 
and the $9 and are global interpolation functions for velocities and pressure. When 
(2.15) and (2.16) are inserted in (2.7) and (2.8), and (2.13) is used, the results are 
residuals defined by 

a 
axk R (x) = -.ii”,”, P (2.18) 

We now define the following Galerkin form of the conservation equations: 

JvR,,(s)$‘JdV = 0, q = 1,2,  ..., N ,  i = 1,2,3,  (2.19) 

R,(x)VdV=O, r =  1,2 ,..., M ,  (2.20) 
J V  

where RUi and R, are given by (2.17) and (2.18). Here V is the volume of the liquid 
in iteration v and dV = dx;dxkdxg. In order to reduce the degree of continuity 
required of the interpolation functions $9, we follow standard procedures (Chung 
1978) whereby certain terms in (2.19) are integrated by the use of the Gauss theorem 
to yield in place of (2.17) and (2.19): 

+J  f fpd$+J gi$QdV=O, q =  1,2 ,..., N .  (2.21) 
s V 

Here S is the surface of the fluid in iteration v, and fi is the external force (per unit 
area) exerted on the fluid in configuration v, defined according to (2.3) by 

(2.22) 

where n, is the mth component of the outwardly directed unit normal to the 
surface 8. 

We turn now to the introduction of boundary conditions. These conditions are 
divided into ‘essential ’ and ‘natural ’ conditions in the finite-element nomenclature. 

An essential boundary condition is the specification of a velocity component. This 
condition is imposed by replacing the equation for the corresponding shape function 
$9 in (2.21) by the statement Ug = Uqc, where Uqc is the desired value of the velocity 
of the node. The equation is subsequently eliminated from the global system of 
equations in such a way that the global system remains symmetric. Essential 
boundary conditions are satisfied exactly in the final solution. 

A natural boundary condition is the specification of an external-force component 
on a surface. Such a condition is imposed by inserting the desired value of the force, 
ff ,  in (2.21) instead of the expression in (2.22). Natural boundary conditions are not 
of necessity satisfied exactly in the final solution. 

On each boundary node two conditions need to be specified, and these may be either 
two essential conditions, two natural conditions or one of each. Surfaces where two 
essential conditions are specified are denoted as ‘no-slip surfaces’. Surfaces with one 
essential condition and one natural boundary condition (not in same direction) are 
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denoted ‘slip surfaces’, and surfaces with two natural boundary conditions are 
denoted ‘free surfaces’. On a node that marks the intersection between a no-slip 
surface and a free surface, one essential condition and one natural condition are 
usually specified in a manner to be explained in the following. 

We turn now to the implementation of natural boundary conditions on a free 
surface in the non-trivial situation when surface tension is considered important. In  
this situationfi in (2.21) is given by 

fj = ni(2H~-cp,,,), (2.23) 

where ni is a component of the unit normal n to the surface, cr is the coefficient of 
surface tension and H is the mean curvature. Now, the mean curvature involves 
second derivatives of the surface location. The consequence of this is that a 
straightforward application of (2.23) in (2.21) would require elements with boundaries 
given by polynomials of a t  least second order and C1 continuity where the elements 
join. In particular, the c1 requirement is inconvenient, and following Ruschak (1980) 
we now demonstrate how this requirement may be reduced to CO for the special 
situation of plane flow. 

We consider the two-dimensional situation in which the surface S is described by 
a curve in a plane. The arc length along this curve is denoted s. We start with the 
first Frenet formula (Sokolnikoff & Redheffer 1966) for the turning of the unit tangent 
vector t with increments in the arc length ds: 

(dtlds) = 2Hn. (2.24) 

When (2.24) is used in (2.23) we find that certain terms in (2.21) may be integrated 
by parts to yield 

J8y fi 4Q ds = - nj P,,, 4Q ds - cr t - ds + a[$Q 41, - cr[4q tilo. (2.25) J8T LY 
Here the square brackets indicate that the quantities are to be evaluated at endpoints 
‘ 1 ’  and ‘ O ’ ,  respectively. Boundary conditions on free surfaces are therefore 
implemented as natural boundary conditions by substituting (2.25) for the corres- 
ponding part of the surface integral in (2.21). This requires the specifications of unit 
tangent vectors a t  the endpoints of the free surface. The specification of these unit 
vectors does not force the contact angle to have the specified value, but merely 
imposes a net interfacial force a t  the contact line. We assume that this interfacial 
force is given by the equilibrium surface-tension coefficients of the joining phases 
(Landau & Lifshitz 1958 3 145) also during flow. This level of physical modelling seems 
to be consistent with the assumptions inherent in (2.23) with a constant coefficient 
of surface tension cr. 

Up to this point no specific element has been chosen. Several elements would be 
possible; however, we have settled on the linear quadrilateral element used also by 
Hassager & Bisgaard (1983) and Bach & Hassager (1984) in Lagrangian flow 
simulations. This means that the coordinates and the velocity field are interpolated 
bilinearly across each element with Go continuity at element boundaries, and the 
pressure field is constant in each element with C-l continuity a t  element boundaries. 
The element is well suited for Lagrangian flow simulations since it is an isoparametric 
element where coordinates and velocities are interpolated with the same functions, 
and since the element is mass preserving as discussed by Sani et al. (1981), and by 
Crochet & Walters (1983). This means, in particular, that a fluid particle with given 
element coordinates remains in the same element with unchanged element coordinates 
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in each time step. After a certain number of time steps has been taken some elements 
may become excessively deformed and then a new element grid must be introduced. 
However, all particles are accounted for in the 'regridding' which is a straightforward 
procedure for Newtonian fluid simulations. 

3. Formulation and numerical implementation of algorithm and a simple 
test problem 

The method described in 92 may be formulated as an algorithm consisting of two 
loops: an outer time-stepping loop; and an inner coordinate iteration loop. In the 
inner loop the nodal velocities U,, and the pressure variables P, are calculated for 
any given trial configuration by solving (2.20) and (2.21) with the appropriate natural 
and essential boundary conditions. For this purpose, (2.15), (2.16) and the natural 
boundary conditions (2.25) are inserted in (2.20) and (2.21) and the algebraic 
equations take the form 

ALP Q ; 1 + C & ~ + 1 + q p , ,  vu,31= q g + c y q g ,  (3.1) 

q*, q' = 0, (3.2) 
wherep, p = 1,2, . . . , N (number of velocity nodes) ; T = 1,2, . . . , M (number of pressure 
nodes); and the spatial dimensions are i , j  = 1, 2, and 

(3.5) 

The integrals in (3.3)-(3.7) are evaluated on configuration Y. According to (2.23), the 
time derivative of U,, is calculated as 

1 
Q p = Z m p - q p ) .  (3.8) 

The inner loop is initiated with Y = 0 and with estimates of nodal values of velocities 
and coordinates, Vtp = qp and xip = x& + At vtp, for all i and p and for some time 
increment At. Then the following three steps are performed iteratively for Y = 1,2 
and so on: 

(1) The system of linear equations in (3.2) and (3.1) with (3.8) are assembled and 
solved for qp and 1",. 

(2) In  agreement with (2.9) and (2.14) a new configuration is found from 

At 
2 (3.9) 

(3) The convergence of the configuration is checked by computation of 6 equal to 

x Y + l  fp = x:p+-(q;'+ q p ) .  

%, p I x:;l-x:p 1 / 1  x;;' -xl"p I. 
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The iteration is continued until S computed in step 3 is less than some prescribed 
value 8. The coefficient matrices (3.3) to (3.7) are calculated from element contri- 
butions, and these are evaluated by Gaussian quadrature with standard techniques 
(Cook 1974; Chung 1978). 

The time-stepping loop includes the inner loop, a time increment selection 
procedure, and a regridding routine. The regridding routine calculates the maximum 
element deformation, and if it is greater than specifed, it generates a new mesh and 
interpolates the old solution onto the new mesh. 

An accurate and easily calculated measure for element deformation is necessary 
if the Lagrangian method is to work effectively. We introduce the following measure: 

v, D, = 
min Jn Wn N ’  

(3.10) 

n 

where Jn is the determinant of the Jacobian matrix in the nth Gauss-point in the 
element e. The Gauss-weight is W,, and N is the number of Gauss-points. The element 
volume (unit thickness), V,, is: 

V, = Z J,, W,. (3.11) 
n 

If an element is not deformed, D, attains the minimum value of 1 .O. As the element 
becomes deformed D, increases and when the element becomes singular D, becomes 
infinite. The deformation measure defined by (3.10) has several advantages over 
measures based on geometrical calculations, which require many expensive trigono- 
metric calculations. The calculation of D, is easily implemented in the element routine 
as the Jacobian determinants are already calculated at the Gauss-points to evaluate 
the Galerkin integrals (3.3) to (3.7). The deformation measure is independent of the 
actual element type used. This feature is especially valuable for higher-order elements. 
A criterion for the maximum allowable mesh deformation can be stated as 

D, < D,,, for all e, (3.12) 

where D,, > 1 is a constant. 
When (3.12) is no longer fulfilled a new element mesh, which satisfies (3.12), is 

generated onto the old mesh. The old velocity field is then interpolated into the new 
mesh and the simulation may be continued. 

The algorithm is implemented in an approximately 5000 statement large FORTRAN 
IV program. The demand for main core depends naturally on the element mesh used, 
and is typically in the order of 1 Mbyte in our simulations. The program is 
constructed to perform a regridding automatically. The need for regridding is 
problem dependent; in some flow situations a regridding is not even necessary and 
in other flow simulations we need 50 regriddings to reach a steady state. Typical CPU 
times are in the range 1-5 min on an IBM 3081. The program has been tested in the 
simulation of several standard flow situations with known analytical solutions. We 
present here the result of one test simulation in which a liquid rises due to capillary 
forces in the space between two vertical parallel plates separated by a distance a (see 
figure 1). To describe the position of the free surface, we introduce a rectangular 
coordinate system with the y-axis pointing in the vertical direction and located in 
the plane of symmetry, and with the x-axis pointing in the horizontal direction and 
located in the plane of the reference pressure. In this coordinate system the 
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0.2 - I .  
-1.0 - 0.5 0 0.5 I .u 

FIQURE 1 .  Two vertical and parallel plates are partly submerged into a fluid. The three initial free 
surface positions are shown with solid lines (1 :  u-b; 2: c-d; 3: e-f). An equilibrium contact angle 
of 45O is specified at c and d. The constant A (3.13) is 2.2 and the capillary length is 0.3209 cm. 
The equilibrium free surface position is shown as a dashed line. Length dimensions are in om. 

equilibrium position of the free surface may be expressed (Landau & Lifshitz 1959) 
in the parametric form : 

cos (8’) ds’ 
[ A - C ~ S  (s’)]:’ 

(3.13) 

y(s) = C[A-cos(s)]t; (3.14) 

where the parameter s takes values in the interval 0 < s < T and T = 42-13, where 
8 is the contact angle. In addition, C is the capillary length, C = (2a / (pg) ) f ,  and A 
is a constant determined from 

cos(8’) ds’ 
a = cS,  

[ A  - C O ~  (s’)]t ’ 
(3.15) 

The initial mesh used is shown on figure 1. No-slip boundary conditions are imposed 
on solid surfaces, except at dynamic wetting lines. Here, slip along the solid surface 
is imposed. Tangent vectors are specified at wetting lines: t ,  = ( l , O ) ,  t ,  = (l,O), 
t, = (a, -a), td = (a,a), t ,  = ( l , O ) ,  and tf = (l,O), where a = 1 / 4 2  which implies 
that the equilibrium contact angle is 45’ for the fluid between the plates. The final 
positions of the free-surface nodes between the plates are shown on figure 2 and 
compared to the analytical solution in (3.13)-(3.15). This example demonstrates that 
it is possible to include the effect of surface tension and contact angle boundary 
conditions with only piecewise linear, CO trial functions, despite the second derivative 
in the curvature term in the normal stress boundary condition. 
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.1 

F'IGURE 2. Comparison of the calculated equilibrium configuration (A) ; and the analytical 
solution (0) of Landau & Lifshitz, (3.13) and (3.14). Length dimensions are in om. 

4. Meniscus between moving parallel planes 
We now present an example which is a detail of many coating processes, including 

both a static and a dynamic contact line. We consider a fluid between two parallel 
plates. The upper plate is moving with a velocity U and the lower plate is stationary. 
A coordinate system is oriented with the x-axis along the lower plate (see figure 3). 
At x = 0, a velocity profile satisfying the momentum equation, and the requirement 
of zero net flux through any plane cutting the plates, is specified, 

where d is the plate separation. We call this boundary the left boundary. The 
remaining boundary consists of the plates and a free surface. Equilibrium contact 
angles (equal to 45") are specified at both contact lines through specifying the 
equivalent unit tangent factors. The boundary conditions specified at nodes at the 
wetting lines are: slip in the s-direction, and no slip in the y-direction. In this 
example, the capillary number p U / a  is 0.033 and the Reynolds number pUd/p is 2. 
Numerical experiments showed that the position of the left-hand boundary had no 
influence on the solution when it was approximately 1-2 gap widths from the free 
surface. The same result was found by Lowndes (1980) on a related problem. 

The steady state velocity field is shown on figure 3 except for the region close to 
the dynamic wetting line. This region is shown on figure 4 in a considerable 
enlargement. The flow field near, but not at, a dynamic wetting line was given by 
Moffatt (1964) assuming a flat meniscus without surface tension : 

(cos6sina-6 sin6 sina-a cosa cose), (4.2) 
1 - 0, - 2) =--  

U sinacosa-a 

(8 cos6 sina-a cosa sine). 
- u e =  1 
'- u sinacosa-a (4.3) 
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65 
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40 45 50 55 60 

FIQURE 3. A fluid held between an upper moving plate at y = 0.02 om, and a lower stationary plate 
at y = 0. The capillary number Ca = 0.033; and U = 10 cm/s. The equilibrium contact angle is 45’. 
At x = 0 a zero net flux velocity profile is specified. The steady-state velocity field is shown aa 
velocity vectors. Note the zero normal component of the velocity vectors on the free surface. Length 
dimensions on 2- and y-axis are cm. Gravity is in the negative x-direction. 

The velocity field is expressed in a plane polar coordinate system (T ,O) ,  where r is 
the distance from the wetting line, and 8 is the angle from the moving wall. The free 
surface is defined by 8 = a. In  table 1 we compare the velocity components calculated 
by the present algorithm at a number of points in figure 4 with those obtained from 
(4.2) and (4.3) in which we let a = 60°, corresponding roughly to the location of the 
curved interface. We feel that the agreement is remarkably good, in view of the fact 
that Moffatt’s solution corresponds to a completely flat interface. 

In  the present example the dynamic contact angle is very close to the equilibrium 
value. To test the situation at larger capillary and Reynolds numbers, we performed 
sirnuletions with U = 20, 150 and 300 cm/s. The free surface for U = 150 and 
300 cm/s, corresponding to Re = 30 and 60 and Cu = 0.5 and 1.0, is shown in 
figure 5. Close to the dynamic wetting line we observe the development of a 
‘ boundary-layer ’ situation, wherein the meniscus slope changes rapidly to obtain a 
dynamic contact angle very close to the equilibrium value. We already know that 
viscous forces dominate inertial effects close to a wetting line. Our simulations show 
that (at least within the present model) capillary forces alone determine the actual 
dynamic contact angle and that this will equal the equilibrium contact angle for 
C a <  1. 

Since the contact angle is very difficult to measure directly at the wetting line, one 
usually resorts to measuring some other surface characteristic, for example, the apex 
height. Then, assuming a specific free-surface profile (often a part of a cylinder or 
sphere), it  is possible to calculate an ‘apparent contact angle’ as the angle of 
intersection of the assumed profile with the wall. Our simulations show, however, that 
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FIGURE 4. Enlargement of the dynamic wetting-line region of figure 3. 
The numbers refer to table 1. Length dimension is cm. 

Moffatt (1964) 

U = 10 cm/s, a = 70°, 
No. e @?. 69 

1 - 35 -0.11 0.26 
2 -41 0.05 0.26 
3 - 57 0.56 0.18 
4 - 60 0.66 0.15 
5 - 27 -0.29 0.23 
6 - 28 -0.27 0.23 

Present algorithm 

Re = 2, 
fir 

-0.14 
0.03 
0.52 
0.65 

-0.30 
-0.27 

Ca = 0.033, 
3 

0.26 
0.26 
0.20 
0.12 
0.24 
0.24 

TABLE 1. Comparison of normalized velocity components near a dynamic wetting line cdculated 
by the Moffatt approximate solution and the present algorithm at different points shown in 
figure 4 

it is not possible to fit any simple profile to the free surfaces using only one measured 
characteristic of the free surface, and that any such ‘apparent contact angle’ is not 
the true contact angle. 

5. Advancing meniscus between fixed parallel planes 
The dynamic contact line problem, formed when a meniscus moves in a capillary 

tube or between parallel plates, has recently been investigated theoretically by Huh 
& Mason (1977) and Lowndes (1980). A recent experimental investigation has been 
performed by Ngan & Dussan V. (1982)’ who made observations on the apparent 
contact angle dependence on the advancing speed and the gap width in a parallel-plate 
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X 

FIGURE 5. The steady-state free surface position for capillary numbers of practical interest: (+ ) 
Cu = 0.5, U = 150 cm/s; (0) Ca = 1.0, U = 300 cm/s. The geometry is the same aa in figures 3 
and 4. Length dimensions are in 10-8 em. 

geometry. Ngan & Dussan V. (1982) assume that the free surface is part of a cylinder 
and define the apparent contact angle e,,, as the intersection of this hypothetical 
cylinder with the plates. Then, ea,, may be calculated from the apex height h and 
the gap width 2a as follows: 

We have performed simulations in the parallel-plate geometry of Ngan & Dussan V. 
Due to the symmetry only one of the symmetric parts needs to be included in the 
simulation. The wetting-line boundary conditions are identical to the previous 
example. Zero shear stress and zero normal velocity are specified at the symmetry 
plane. At the intersection line between the free surface and the symmetry plane a 
unit tangent vector to = (0 , l )  is specified. A parabolic inflow velocity profile is 
specified at 5 = 0. 

On figure 6 the steady-state velocity field is shown in a coordinate system moving 
with the wetting-line velocity U. In  table 2 the calculated solution is compared with 
Moffatt's local solution. The agreement is very good, which implies as expected that 
the viscous terms alone determine the velocity field near the wetting line. The surface 
tension seems to affect only the pressure field and the free-surface shape. 

Ngan & Dussan V. (1982) have reported values of the apparent contact angle 
measured in a parallel plate geometry for three different gap widths. Their main 
conclusion is that Bapp not only depends on the capillary number Ca, but also on a. 
To test the influence of a,  we performed two simulations with a = 0.005 cm and 
a = 0.035 cm, respectively, and with Ca = 0.02 in both simulations. In  all simulations 
we prescribe an equilibrium contact angle equal to 35". We arrived at this particular 
value by extrapolation to zero capillary number in table 4, p. 33 of Ngan & Dussan 
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0 
44 46 48 50 Yo 52 54 

Y 
FIGURE 6. The symmetry part of a fluid advancing between two parallel plates. At y = 0 a 
semiparabolic velocity profile is specified. The velocity vectors are shown in a coordinate system 
moving with the contact line velocity. The numbers refer to table 2. The capillary number is 
Ca = 0.01, and length dimensions are in cm. Gravity is in the negative y-direction. 

Moffatt (1964) Present algorithm 

U = 0.0203 cm/s, a = ma, 
No. e @r @e 

1 0 -0.54 0 
2 -41 0.24 0.20 
3 - 15 -0.44 0.14 
4 - 48 0.51 0.16 
5 - 32 -0.07 0.22 
6 - 50 0.59 0.14 

Re = 2 x 

@r 

-0.51 
0.23 

-0.43 
0.53 

-0.09 
0.59 

Ca = 0.01 
3 

0 
0.20 
0.14 
0.16 
0.21 
0.11 

TABLE 2. Comparison of normalized velocity components near a dynamic wetting line calculated 
by the Moffatt approximate solution and the present algorithm a t  different points shown on 
figure 6. Note: the wetting-line velocity U has been subtracted from the velocity field calculated 
by the present algorithm. 

V. (1982). The results are summarized in table 3 and figure 7. The agreement between 
the calculated and measured apparent contact angles is remarkably good. Calculations 
2 and 3 (table 3) show that the assumptions of negligible inertial and gravity 
influence, made by Ngan & Dussan V. (1982), are correct. Neither the Reynolds 
number (Re = pUa/p)  nor the Bond number (Bd = pgu2/a) has any influence on OaPp. 
As the capillary number is the same in the two simulations, and as Re and Bd have 
no influence, the same solution should be found if no other parameters entered the 
problem. The experiments of Ngan & Dussan V. (1982) show that one does not find 
the same h/a values, which implies that one more parameter must enter in a model 
of flows containing dynamic contact lines. The agreement between the experiments 
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Calculated 
a Measured 

(cm) Rex lo6 Bd x loa Bsx los cosO,,, O,,, %PP 

1 0.005 2,o 1.2 56.0 0.588 54.0 54f1.5 
2 0.035 14.0 59.0 8.0 0.453 63.1 63f1.5 
3 0.035 14.0 1.2 8.0 0.453 63.1 
4 0.035 2.0 59.0 8.0 0.455 63.1 

TABLE 3. Comparison of calculated and measured (Ngan & Dussan V. 1982) values of the apparent 
contact angle for two different gap widths. The capillary number is constant Ca = 0.02. The slip 
number is defined aa Bs = 7U/a where 7 is the reorientation time. Equilibrium contact angle = 35" 
in all simulations 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.0 

- 1 (a = 0.005 an) 

- t 2 (a = 0.035 cm) / 

FIGURE 7. The normalized free surface position in the same geometry as in figure 6 for two different 
plate distances, with constant capillary number Ca = 0.02. The y coordinate is y- yo, where yo is 
the intersection point between the symmetry plane and the free surface. The apparent contact angles 
are listed in table 3. 

and the simulations shows that Navier-Stokes equations with the presented slip 
boundary conditions can be used as a valid model for such flows. The additional 
parameter enters through the boundary conditions at the wetting line. Here the fluid 
is allowed to slip over some distance /3. The physical interpretation of this model is 
that the molecules need a finite 'slip time', 7 ,  to complete their bonds to the solid 
interface. During the time 7 the wettingline moves the distance = 7U. Unfortunately, 
there seems to be no theory nor measurements from which 7 can be found directly. 
The slip time can also be considered just as a model parameter, which has to be 
estimated in the model from some suitable experiments. The results in table 3 have 
been obtained with 7 = 7 x sin all simulations. If more data were present, it  would 
be possible to test whether the slip time is a unique physical property of the fluid 
and the solid. 

7 F L M  152 
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FIGURE 8. Slide coating. The capillary number is Ca = 0.58; the Reynolds number is Re = 33.3. 
The Bond number is Bd = 0.02. The dimensionless inflow rate is q = 0.5, and the dimensionless 
pressure difference is - 30. Length dimensions are in cm. 

6. Slide coating 
Kistler & Scriven (1983) have very recently reviewed computational methods for 

coating flows. To illustrate the capability of the implementation of our algorithm, 
we have chosen one of their industrial coating flows, the slide-coating flow, shown 
on their figure 8.7g. In this coating process there are two free surfaces and two contact 
lines at the lower free surface. To obtain the steady state shown on figure 8, a pressure 
difference (PI - pZ < 0) must be specified. In the situation shown, the ultimate film 
thickness is reached very fast. With other parameters the film-forming zone may 
extend far downstream. Since it is advantageous to perform the slide-coating 
operation as fast as possible, it  is important to find conditions under which the flow 
is stable. Indeed the steady state shown in figure 8 is reached in a two-dimensional 
transient calculation, we conclude that will not be unstable to a two-dimensional 
disturbance. The same conclusion cannot be reached on the basis of the Eulerian 
steady-state simulation cited by Kistler & Scriven without a separate stability 
analysis, and this then illustrates an advantage of the Lagrangian approach. 

7. Discussion 
It has been demonstrated that the proposed algorithm for the use of the 

Lagrangian kinematic specification may be implemented with the aid of the finite- 
element method. The method has been shown to have considerable flexibility with 
a wide range of boundary conditions. 

The algorithm consists of an outer time-stepping loop and an inner coordinate 
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iteration loop. By reducing the time step in the outer loop, the desired velocity in 
the inner loop can be made arbitrarily close to the known velocity in the previous 
time step. No formal proof of convergence is given but in all examples shown here 
the convergence in the velocity iteration loop is better than linear. 

In order to obtain convergence of finite-difference solutions at high Reynolds 
numbers i t  is customary (Roache 1976) to use ‘upwinding’ techniques. Roughly 
speaking the need for upwinding arises when the convective terms dominate the 
viscous terms. In the present technique no such additional devices are needed or even 
possible since ‘upwinding’ is in a natural way included with use of a Lagrangian 
specification. 

Moving contact lines are modelled with minute slip at the contact line and contact 
angles are included as natural boundary conditions. The agreement between the 
theoretical predictions and the experimental results of Ngan & Dussan V. in $5 
provides evidence that this is a valid model. It has also been demonstrated that, 
within this model, the true contact angle will remain equal (or nearly equal) to the 
equilibrium contact angle at  least up to capillary numbers O(1). Consequently, our 
model is in agreement with that of Hocking (1981) and Lowndes (1980) who impose 
the contact angle as an essential boundary condition. The model is, however, different 
from that of Kistler & Scriven (1983) who introduce a ‘dynamic contwt angle’ which 
is different from the equilibrium contact angle. Our simulations do not support this 
notion, but more experimental evidence may be needed to decide between the models. 

We demonstrate how the theoretical predictions may be used to obtain information 
about the slip time from experimental measurements, and the need for such 
measurements is reiterated. 
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